Research and Educational facilities all around the United States depend on rare metals and alloys to engineer and implement cutting edge technologies and to fuel future discoveries. Leading Edge Metals and Alloys is a strategic provider of materials to our research and education partners who need a reliable supply of rare and hard-to-find metals and alloys.
HyMu 80 alloy is an unoriented, 80% nickel-iron-molybdenum alloy which offers extremely high initial permeability as well as maximum permeability with minimum hysteresis loss.
HyMu 80 alloy has been used primarily in transformer cores, tape wound toroids and laminations where compactness and weight factors are important. It has also been used for shielding to protect electrical components from stray magnetic fields.
It is used in laminated cores for instrument transformers, magnetic shields and cores for certain electronic and communication devices. High Perm 49’s extremely high permeability at low magnetizing forces significantly increases operational effectiveness and efficiency. Because of its high permeability, it is used in solenoid cores and in light-sensitive relays that must operate and respond to weak currents that induce low magnetizing forces.
For decades, scientists, engineers, metal suppliers and fabricators have referred to mumetal as the industry standard. However, MuMETAL® is a registered trade name and exclusively available from Magnetic Shield Corporation, a worldwide leader in low-frequency magnetic shielding.
Like Niobium, Tantalum is a heat-tolerant refractory metal with excellent corrosion resistance. Often alloyed with other metals, tantalum is used to make super alloys used in chemical processing, jet engines and nuclear reactors. Its oxidation properties also make it an excellent choice for many electronic applications, including electrolytic capacitors and high-power resistors. Tantalum is also highly bio-compatible and used extensively for medical applications, such as skull plates, hip joints, suture clips and stents.
Tungsten has the highest melting point of all metals and, at temperatures greater than 1650°C, the highest tensile strength. Its thermal expansion rate is similar to that of borosilicate glass and silicon. Tungsten’s good thermal and electrical conductivity make it an excellent choice for microprocessor applications. It is also used in electron emitters, heater coils, cathode ray tubes, electrical contacts and a variety of high-heat applications.
The addition of rhenium to molybdenum improves plasticity and weldability and decreases brittleness for certain temperature ranges. It is used throughout the aerospace and electronics industries for applications such as nuclear reactors, semiconductors, electrical contacts, filaments and igniter wires.
For use in extremely high-heat environments, type C thermocouples are made from alloys containing different rhenium-tungsten ratios. Rhenium-Tungsten is also used in traditional tungsten applications when greater ductility is desired.
Alloy 52 is a nickel-iron alloy with a thermal expansion rate similar to soft glasses and ceramics. Typical applications include voltage regulators, conductors, and glass-to-metal hermetic seals.
Composed of iron, nickel and cobalt, Kovar®1 has thermal expansion characteristics similar to hard glass, making it an excellent choice for glass-to-metal hermetic seals. Kovar® is widely used in the electronics industry.
Find the product you're looking in our readily-available inventory or request a quote on a hard-to-find material.
Explore Materials Request a Quote